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• Overview and Review

• The approach

• The calculation

• Results: suppression of jets, with respect to pp, is nearly

energy independent

• What remains to be done
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Physical picture

primary partons collide to

give (rare) hard partons.
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Hard partons must punch

out through QGP.
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Energy loss along the way means that, on hadronization, the

produced hadrons are lower energy than they would have

been in a pp collision.
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Energy Loss I

Energy loss to binary collisions Does Not Increase as

parton’s energy increases!

—Less important for hardest partons

Main energy loss is by

Bremsstrahlung radiation

Naively, energy loss rate

dE

dx
∝ E

due to growing phase space for the final bremmed gluon
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Energy Loss II

Bremsstrahlung dominates – but it is complicated!

QGP is a dense medium and bremsstrahlung has a long

formation time. Emission amplitudes for successive

scatterings can interfere:

*

Low densities: large random phases kill interference terms

High densities (QGP): interference effects are O(1).

The LPM effect!
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Energy Loss III

Bremsstrahlung: energy loss dominated by rare, large E loss

events.

A mono-energetic sample,

undergoing brem, ends with

a broad range of energies.

This is very important for a steeply falling initial

spectrum–as occurs for hard jets!
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Extreme Example

Imagine a spectrum, dN/d2p⊥ ∝ p−10
⊥
.

Suppose an energy loss mechanism such that half of

particles lose all their energy, half lose nothing.

–Spectrum suppressed by a factor of 1/2.

The average loss was 1
2
. If every particle had suffered the

average loss instead,

–Spectrum would be suppressed by 2−8.

Using the averaged energy loss can be very wrong
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Our goal

Revisit calculation of energy loss, taking care to

• evaluate bremsstrahlung rate at leading order in αs

• treat the LPM effect in a complete way

• include medium effects

• treat correctly the evolution of the spectrum

7



LPM modified bremsstrahlung

Multiple scatterings require resummation over an infinite set

of diagrams, very similar to diagrammatic derivation of

Bethe-Salpeter or Boltzmann equations.

Basically done correctly by Baier et. al. modulo a few

details:

• dynamic, rather than static, scatterers

• medium corrections to dispersion

Neither improvement on Baier et. al. treatment is

significant.
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Bremsstrahlung rate is

dΓ(p, k)

dkdt
=

Csg
2
s

16πp7

1

1± e−k/T

1

1± e−(p−k)/T
×

×























1+(1−x)2

x3(1−x)2
q → qg

Nf
x2+(1−x)2

x2(1−x)2
g → qq

1+x4+(1−x)4

x3(1−x)3
g → gg























×

×

∫ d2h

(2π)2
2h · Re F(h, p, k) ,

(p: primary energy; k: gluon energy; x ≡ k/p;

h: measure of non-collinearity)
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Here F is given by

2h = iδE(h, p, k)F(h) + g2
∫ d2q⊥

(2π)2
C(q⊥)×

×
{

(Cs − CA/2)[F(h)− F(h−k q⊥)]

+(CA/2)[F(h)− F(h+pq⊥)]

+(CA/2)[F(h)− F(h−(p−k)q⊥)]
}

,

δE(h, p, k) =
h2

2pk(p−k)
+
m2

k

2k
+

m2
p−k

2(p−k)
−
m2

p

2p
.

with C(q⊥) =
m2

D

q
2

⊥
(q2

⊥
+m2

D
)
, m2

D =
g2
s T 2

6
(2Nc+Nf) .

Red: differences WRT. Baier et. al.
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Expression for F(h) was an integral equation. Two solution

methods:

• Brute force

• Approximation that LPM effect is large

Doing the calculation: LPM effect is a factor of 2

suppression for k = 10T (T the plasma temp, k the emitted

gluon energy) and smaller for smaller k.

Steeply falling spectrum: k ¿ p are most important (a

particle, losing just part of its energy, is buried under more

common particles of that energy)

One Must Use the Brute Force Approach!
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Evolution of hard parton distributions

Quark, momentum p, emits gluon, momentum k: Nq(p)

drops, but Nq(p− k) and Ng(k) increase. Joint evolution

equations:

dPq(p)

dt
=
∫

k
Pq(p+k)

dΓq
gg(p+k, k)

dkdt
− Pq(p)

dΓq
gg(p, k)

dkdt

+2Pg(p+k)
dΓg

qq(p+k, k)

dkdt
,

dPg(p)

dt
=
∫

k
Pq(p+k)

dΓq
qg(p+k, p)

dkdt
+Pg(p+k)

dΓg
gg(p+k, k)

dkdt

−Pg(p)

(

dΓg
qq(p, k)

dkdt
+
dΓg

gg(p, k)

dkdt
Θ(2k−p)

)
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Weaknesses of Approach

• Assumes QGP is thermalized

• Perturbative treatment: how reliable is leading order in

αs?

• Treatment assumes formation time short compared to

propagation time

• Treatment assumes formation time short compared to

time between bremsstrahlungs

The last 2 are consistent with αs expansion (if enough

energy loss occurs to be interesting)
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Incomplete and In Progress

• 2↔ 2 (Binary) processes

• Nuclear geometry

• Hydrodynamic development

• Hadronization: hard partons to high energy hadrons
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So far: evolution through a finite slab

Assumed initial p⊥ spectrum: dN/d
2p⊥ ∼ (p

2
⊥
+ p2

0)
−5 with

p0 ∼ 1.75 GeV [Wang and Wang]

Result scales: Energy loss, writing E/T (T the temperature)

and x× g4
sT (x the slab thickness), is “pure” result.

For presentation, we take T = 400 MeV, αs = 1/3

Plotted quantity:

R̃ ≡
Final dN/dp

Initial dN/dp
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Initially Pure Quark Spectrum

Negligible glue produced.
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Initially Pure Gluon Spectrum

Gluons lost more than twice as fast as Quarks
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Results so far

• Falling ratio

R̃ ≡
Final dN/dp

Initial dN/dp

becoming flat around 20T (8 GeV?) and remaining flat

out to quite high energy > 20 GeV

• assuming same initial population of hard partons, the

same will hold for

R ≡
AA dN/dp

# collisions × pp dN/dp

• Gluon energy loss twice as fast as quark energy loss
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Conclusions

We still need to include nuclear geometry, but

It is difficult to see how central result–very flat R̃–could

change.

Initial state effects (Cronin, shadowing) not needed to

explain p⊥ independent suppression of high p⊥ hadrons.

We expect the same flat behavior at the LHC.

It should be easy to extend this work to γ production by

hard partons traversing the QGP.
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